
C H O L E S T E R O L  M E T A B O L I S M  I N  T H E  M A C R O P H A G E  

I I I .  INGESTION AND INTRACELLULAR FATE OF CHOLESTEROL 
AND CHOLESTEROL ESTERS* 

BY ZENA WERB:~ AND ZANVIL A. COHN 

(From The Rockeleller University, New York 10021) 

(Received for publication 28 July 1971) 

Previous studies have described the exchange of free cholesterol molecules of macro- 
phage membranes with those of serum lipoproteins (1). Exchangeable cholesterol was 
found in two compartments. The rapidly exchanging compartment was identified as 
the plasma membrane, and the slowly exchanging compartment was associated with 
intracellular membranes (2). Cholesterol esters (CE's) 1 were not exchanged under 
these conditions, a finding which is in keeping with prior studies employing lipoprotein 
classes and erythrocytes (3). 

Under physiological and pathological conditions macrophages are exposed to other 
forms of both free cholesterol and CE's. Effete erythrocytes, tissue cells, and chylo- 
microns are taken up by phagocytosis (4-6), and subsequently are localized within 
cytoplasmic phagolysosomes. Many of their constituents are then degraded by acid 
hydrolases (7-9). 

Similar events take place under in vitro culture conditions and may lead to the 
formation of an intralysosomal compartment of free and esterified cholesterol, clearly 
distinct from the membrane-associated intracellular pool. The processing and fate of 
cholesterol and CE's within the digestive vacuole is poorly understood. 

In  this paper  we describe the formation of intralysosomal pools of par t icu-  
late-free and esterified cholesterol, their intracellular  processing and excretion 
from the macrophage,  and their  influence on the kinetics of exchange. In  addi-  
tion, a lysosomal cholesterol esterase has been characterized and its function 
evaluated  in cell lysates and in the intact  macrophage.  

Materials and Methods 

Methods for harvesting and cultivating macrophages, analytic procedures, and microscopy 
have been described previously (1, 2). For electron microscopy the propylene oxide steps were 
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omitted and the sample embedded in Epon after 100% alcohol. We are indebted to Doctors 
James G. Hirsch and Martha E. Fedorko of The Rockefeller University for taking the electron 
micrographs. All chemicals used were commercially available analytic reagent grades. 

Preparation of Cholesterol-14C-Labded Human Erythrocyte Ghosts.--The washed erythro- 
cytes from 20 ml of fasting venous blood were lysed (10). The plasma was labeled with choles- 
terol-4-14C (40 mCi/mmole, New England Nuclear Corp., Boston, Mass.) by injecting 10/~Ci 
in 0.5 ml acetone into 5 ml plasma (Millipored) plus 15 ml phosphate-buffered saline (PBS), 
pH 7.4, containing 20,000 units penicillin. Excess acetone was blown off with a stream of sterile 
N2, and the mixture incubated at 37°C on a rocker platform for 20 hr. Approximately 5 X 101° 
packed ghosts were added to the labeled plasma, 1.45 ml acetone was added, and the mixture 
was incubated at 37°C for 4 hr (ll) and the ghosts centrifuged at 20,000 g for 20 min. The 
ghosts were washed three times in 20 volumes hypotonic phosphate buffer (20 ideal milli- 
osmolar, pH 7.4), or until washes contained no label. Ghosts contained 3 X 104 disintegrations 
per minute (dpm) of cholesterol-14C/10s ghosts. 

Preparalion of Partic~date-Free Cholesterol CompIexes.--Bovine serum albumin (BSA) (Cohn 
fraction V, Armour Pharmaceutical Co., Chicago, IlL) was dissolved in medium 199 to give a 
2% (w/v) solution, and sterilized by filtration through a 0.45 /2 Millipore filter (Millipore 
Corporation, Bedford, Mass.). Cholesterol (reagent grade, Mann Research Labs, Inc., New 
York) was dissolved in acetone at 20 mg/ml. I ml of the acetone solution was injected rapidly 
into 2 ml of the BSA solution. The acetone was removed by a stream of warm N2, and the 
resulting mixture was sonicated in an ice bath at setting No. 4 of a Branson Sonifier (Branson 
Instruments Co., Stamford, Conn.) for 60 sec. The volume of the resulting emulsion (the 
cholesterol to albumin ratio was 1:2, by weight) was adjusted to 2.0 ml with medium 199, 
giving a concentration of 10 mg cholesterol/ml. The emulsion consisted of relatively uniform 
particles about 0.5 ~ in diameter and was stable for months. Radioactive complexes were 
made by adding cholesterol-3H to the cholesterol in acetone solution. 

Preparation of Particulate CE Complexes.--CE complexes were made by a method similar 
to that for the free cholesterol complexes. BSA was used as a 1~  solution in medium 199. The 
CE's were less soluble in acetone, so solutions were made in acetone containing 10-20% 
petroleum ether (PE) by volume. 2 ml 1% BSA were mixed with 3 ml of acetone solution 
containing 20 /lmoles CE. The organic solvents were blown off with N2 then processed as 
above to give 10 ~moles CE/ml. The concentration was checked by gas-liquid chromatography 
(GLC) after saponification. The resulting complexes (CE/albumin = 1 /lmole/mg) were 
refractile spherules of about 0.5 # in diameter. Radioactive complexes were made by adding 
radioactive CE to the unlabeled CE in acetone solution. 

Synthesis of Radioactive CE' s.-- 
Plasma CE's: Labeled mixed plasma CE's were prepared by utilizing the lecithin-choles- 

terol acyltransferase cholesterol esterifying system present in fresh human serum (12). 15 m] 
of human blood was allowed to clot at 37°C for 4 hr. Serum was recovered after centrifuging 
at 2000 rpm for 15 min and clarified by repeating the centrifugation step. To 7 ml serum, 
70 #Ci cholesterol-7a-3FI in acetone was added, and the mixture incubated for 16 hr at 37°C 
on a rocker platform. 14 ml methanol was added to the mixture, and the neutral lipids were 
extracted with 4-25 ml aliquots of PE. The extracts were pooled, concentrated, and streaked 
on a preparative thin-layer chromatography (TLC) plate, which was developed in PE-diethyl 
ether-acetic acid (85:15:1). A small sample was chromatographed on an analytical plate and 
used to determine radioactivity. About 30% of the label ran with CE's. Spots on the prepara- 
tive plate were localized with I2 vapor. The CE band was eluted with PE, and the radioactivity 
in this band, checked by TLC, was >98% in CE. About 10 mg of CE (10 ~ dpm/mg) were 
recovered. The CE fatty acids as determined by GLC were 16:0, 8.1%; 61:1, 2.3%; 18:0, 
2.7%; 18:1, 19.4%; 18:2, 60.4%. 

Cholesteryl-7c~-3H linoleate (CL) and cholesteryl-7o~-3H palmitate (CP): Radioactive CE's 



ZENA WERB AND ZANVIL A. COHN 23 

were synthesized on a microscale by reacting 1 mCi (15 Ci/mmole) cholesterol-7a-3H with 
20/~1 of either linoleoyl chloride (cis,cis,9,12-octadecadienoyl chloride, 99~o pure, Analabs 
Inc., North Haven, Conn.), or palmitoyl chloride (hexadecanoyl chloride, 99% pure, Analabs 
Inc.) using the method described by Goodman (13). Purity checks by silver nitrate TLC 
indicated that the final products were >97% CL (15 Ci/mmole) and CP (15 Ci/mmole), 
respectively. 

Enzyme Assays.- 
Cholesterol esterase: The reaction mixture in this assay consisted of a small capped tube 

with 0.1 ml enzyme mixture, 0.4 ml Mcllvaine's citrate-phosphate buffer (14), usually pH 4.0, 
and 10-100 nmoles CE-3H (usually diluted with "cold" CE to 1/2Ci//~mole) blown into the 
buffer-enzyme mixture in 10 pl acetone. The reaction mixture was incubated at 37°C for 2-10 
hr, then the reaction was stopped by adding PE. The radioactive-free and ester cholesterol 
were extracted with 3-5 ml aliquots of PE, concentrated in a stream of N2, and an aliquot 
spotted on a fexible TLC plate (silica gel 1B, Bakerflex, J. T. Baker Chemical Co., Phillips- 
burg, N. J. ). Routinely, 10-cm plates were used. The chromatograms were developed in 
PE-diethyl ether-acetic acid (85:15:1). Cholesterol runs near the origin, while CE's run near 
the solvent front in this system. The TLC strip was cut in half and the radioactivity in the 
two fractions determined. The per cent as free cholesterol compared to the total was the 
measure of hydrolysis. 

Acid phosphatase: This enzyme was assayed at pH 5.0 using sodium acid naphthyl phos- 
phate as substrate (15). 

GLC.--Cholesterol was extracted and measured as the trimethylsilyl ether by GLC as 
described previously (1). Total cholesterol was measured after saponification. 

CE fatty acids were determined by GLC on an F and M Biomedical gas chromatograph 
(Hewlett-Packard Co., Avondale Div., Avondale, Pa.) made available to us in the laboratory 
of Dr. E. H. Ahrens, Jr. of The Rockefeller University. Fatty acid methyl esters were prepared 
by transesterification with boron trifluoride-methanol (14% w/v, Applied Science Labora- 
tories Inc., State College, Pa.) by the method of Morrison and Smith (16), and separated on a 
6 ft, 4 mm I.D. column of 10% ethylene glycol succinate (EGSS-X) on Gas Chrom P, mesh 
100/200 support (Applied Science Laboratories, Inc.), at 182°C column temperature, with N2 
carrier gas, 30-60 ml/min, 20 psi inlet pressure. A hydrogen flame detector was used and the 
peak sizes were integrated electronically. Fatty acids were identified by comparison with 
standard fatty acid mixtures (Applied Science Laboratories). The column used had 442 
theoretical plates/ft at oleic acid. 

Mathematical Methods.--The mathematical analysis of turnover curves used to calculate 
rate constants was described previously (1). 

RESULTS 

Ingestion of Cholesterol-14C-Labded Erythrocyte Ghosts.--Macrophages which  

had  phagocy t i zed  an t ibody-coa ted  e ry th rocy te s  con ta ined  l i t t le  morpho-  

logically recognizable  mate r ia l  24 hr  af ter  ingest ion and conta ined  the  same 

a m o u n t  of cholesterol  as control  cultures.  E r y t h r o c y t e  membranes ,  isola ted 

af ter  hypo ton ic  lysis of in t ac t  red cells ( R B C )  were used in this s tudy  to in- 

crease the  efSciency of cholesterol  up take .  H u m a n  R B C  ghosts,  labeled by 

exchange  wi th  cholesterol-~4C, were coa ted  wi th  opsonizing t i ters  of r a b b i t -  

a n t i - h u m a n  R B C  serum (17). A b o u t  12-20 g h o s t s / m a c r o p h a g e  were t aken  

up  in 1 hr. T h e  to ta l  mac rophage  cholesterol  and phosphol ip id  increased abou t  

fourfold.  D u r i n g  the  subsequen t  24 hr  per iod in 20% newborn  calf se rum 

( N B C S )  morpholog ica l ly  recognizable  ghosts  d isappeared ,  the  excess choles- 
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terol and phospholipid-phosphorus returned to control levels, and the choles- 
terolJ4C counts were recovered in the medium as free cholesterol-4J4C only 
(Fig. 1). Thus, cholesterol from within the lvsosome was reaching the extra- 
cellular milieu. 

Morphological Studies of Ingested Cholesterol-Albumin Complexes.--The net 
flux of cholesterol out of the macrophage was examined in greater detail by 
using particulate cholesterol or cholesterol-7-aH-albumin complexes (1:2, 
cholesterol: protein, by weight). 

Dose response experiments revealed that the complexes were phagocytized 
avidly at concentrations of 10-500 ttg/ml of cholesterol as complexes, in 20 % 
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FIG. 1. Loss of cholesterol and phospholipid phosphorus after ingestion of cholesterol-14C- 
labeled erythrocyte membranes. 

NBCS. Higher concentrations were toxic when the macrophages were exposed 
for longer than 2 hr. At 100 ttg/ml, the medium was cleared of complexes in 
24 hr, and at 200 ~g/ml 98 % of the macrophages had phagocytized complexes 
in 1 hr. In 4 hr many irregular particles were present in perinuclear granules 
(Fig. 2). These complexes were birefringent, and gave the typical Maltese 
crosses when viewed with polarized light. Ultrastructurally, the macrophages 
which ingested the cholesterol particles were filled with membrane-bounded 
vacuoles in the centriolar area (Fig. 3). The irregular masses were comprised of 
an electron-opaque matrix containing more electron-lucent crystalloids. The 
different grades of electron opacity of the complexes may be due to partial 
extraction by the dehydrating solvents used in preparation of the specimens, 
or bv intracellular processing of complexes phagocytized early in the 4 hr 
ingestion period. 
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After phagocytosis had occurred, the macrophage cultures were rinsed to 
remove the excess particles, then placed in fresh 20~. NBCS. During the next 
8 hr, the number of detectable complexes decreased (Fig. 2). Man 3" lipid drop- 
lets appeared as a consequence of digestion of the albumin and liberation of 
the attached free fat ty acids. This accumulation of triglyceride also occurred 
after phagocytosis of heat-denatured albumin particles (Z. Werb, unpublished) 

FIG. 2. Phase-contrast appearance of macrophages after ingestion of particulate cholesterol 
albumin complexes. Phase contrast X 1250. (a) 15 min after ingestion many irregular, slightly 
refractile particles are present in the perinuclear zone. The cell has few lipid droplets. (b) 8 hr 
after ingestion the number of complexes has decreased. The cell has many refractile lipid 
droplets in a halo at the junction of the cell body and cytoplasmic veil. (c) 48 hr after ingestion 
this binucleate macrophage has phase-lucent and phase-dense granules, but no recognizable 
complexes in the centrosomal area. The cell also contains many lipid droplets. (d) A control 
macrophage containing phase-dense granules and vesicles but few lipid droplets. 

By  48 hr after ingestion, the macrophages contained very few residual com- 
plexes (Fig. 2) and were morphologically similar to controls (Fig. 2). 

Ingestion and Intraeellular Fate of Cholesterol-3H-Albumin Complexes.--In- 
gestion of the complexes was linear for at least 6 hr. Up to 150/~g cholesterol 
was taken up producing a 50-100-fold increase in total cellular cholesterol. 
In  most experiments 10-50/~g of cholesterol was ingested (a 1-4 hr ingestion 
time). After ingestion the cells were placed in 20% NBCS medium, and the 
loss of label followed (Fig. 4). The labeled cholesterol was excreted from the mac- 
rophages which had ingested the particulate cholesterol complexes, with a single 
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exponential  decay rate.  The label recovered in the medium was free cholesterol 
only. As a control, the washout  of cholesterol-3H from macrophages prelabeled 
by  exchange was followed simultaneously. The typical  biphasic exchange 
kinetics were again observed. The cholesterol content  of the cholesterol-loaded 
cells decreased in parallel  to the loss of label, with a half-life of 20 hr (Table 
I) .  The rate constant  describing the relat ive excretion of cholesterol was kc = 

Fro. 3. Ultra~structure of macrophages which have ingested cholesterol-albumln complexes. 
X 21,000.30 min after ingestion the cell is filled with irregular phagosomes (arrows) containing 
complexes arranged in the centrosomal region of the cell. The complexes have an electron- 
opaque matrix containing electron-lucent crystalloids. 

0.035 hr - t  (average of five experiments,  k~ = 0.033 ± 0.004 hr-1); t ha t  is, 
3.5 ~4 of the intralysosomal cholesterol was excreted/hr .  The rate  constant  was 
invar iant  over intracel lular  concentrations of 10-150 gg cholesterol/flask. The 
control cells exchanged cholesterol with two exponential  phases character ized 
by  half-lives of 3 and 21 hr. The calculated rate  constant  for the relat ive move- 
ment  of cholesterol from the lysosomal membrane  to the p lasma membrane  
was k~2 = 0.037 hr -1, and the rate constant  for movement  of cholesterol from 
the p lasma membrane  to the medium lipoproteins was k2t = 0.209 hr -1. The 
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FIG. 4. Excretion of cholesterol from macrophages after ingestion of cholesterol complexes. 
(a) Ingestion of complexes by macrophages. (b) Loss of label from macrophages after ingestion 
of cholesterol-albumin complexes. The initial intracellular content of cholesterol, as complexes, 
was 83 #g/flask. (c) Effect of serum concentration on the rate of cholesterol excretion. The 
amount of cholesterol ingested as complexes remaining during washout in NBCS medium 
is shown. 

similar values for k~ and k32 suggested that  the rate-limiting reaction for cho- 
lesterol excretion from the intralysosomal compartment may occur at the same 
step as the rate-limiting reaction of the slowly exchanging or lysosomal mem- 
brane compartment. 

Serum lipoprotein concentration in the medium influenced the rate of cho- 
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lesterol excretion (Fig. 4). Cholesterol from the intralysosomal particles was 
lost slowly in lC~ NBCS (kJ % = 0.0087 hr-~), more rapidly in 20% NBCS 
(k~ 2°% = 0.031), and most rapidly in 409; NBCS (k~ 4°% = 0.048). No choles- 

terol or label was lost from cells incubated in 1 ~;:{ BSA medium. The lipopro- 

reins in the medium also served as the acceptors for the excess cholesterol. In  

exchange, both the rapid and slowly exponential phases are affected by serum 

lipoprotein concentration (1). 

If cholesterol is excreted from the macrophage bv the exchange process, 

TABLE I 

Kinetic Constants for Cholesterol Exchange and Cholesterol Excretion* 

Experiment Time constants { Rate constants§ 

Excretion : 

Loss of cholesterol- 
aH complexes 

hr ]lr 1 

t~/,;,! k,, 
20 0.035 

Exchange: /1/2X t l /2u k21 ka2 k23 
Loss of cholesterol- 3 21 0.209 0.037 0 018 

aH in washout ex- 
periment 

(X - 0.231 hr -1) (# = 0.033 hr -1) 

* Kinetic constants were determined for washouts in 20% NBCS medium. 
:~ Half-lives are determined directly from graphical analysis. 
§ Rate constants ~ij represent the rate of motion of cholesterol from one compartment i, 

to another j, relative to the mass in compartment i (that is fraction transferred per unit 
time), k21 represents exchange from the plasma membrane (fast) compartment to the medium; 
ka~ is the rate from the lysosomal membrane (slow) to the plasma membrane (fast) compart- 
ment; k2a is the rate for the exchange from the plasma membrane compartment to the lysoso- 
real membrane compartment. For exchange, there is no net flux of cholesterol. For excretion, 
k~ ( = ln/fi.2) represents the fraction of the cholesterol of the complexes excreted per unit time. 

1[ Value for the experiment described in Fig. 4 b; for five experiments, tl/2 = 21 -4- 3 hr. 

now operating to give a net flux of cholesterol, then ingestion of the complexes 

would change the measured kinetics of exchange. If excretion from intralyso- 
somal pool occurs during external labeling, then a decrease in label taken up 
over 4 hr would take place. This was observed. Cells filled with nonradioactive 
cholesterol complexes took up label to 80';~ of the control value. When labeled 
medium was withdrawn, and the washout followed, net flux would occur if 
ks2 --* Ks., > ks2, or k2a --* K2a < k2a, (18-20), which would produce net move- 
ment  of cholesterol from compartment  3 to compartment  2. The consequence 
of this would be an increased loss of label from the cells. A 50% increase in 
the rapid rate of loss was observed. Analysis of compartment  sizes could not 
be made for these experiments because a net loss of cholesterol occurred in the 
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cells containing the complexes, while exchange only occurred in the controls. 
These results suggest that excretion was occurring via the exchange system. 

Macrophage Acid Cholesterol E~terase.--Macrophage lysates were tested for 
the ability to hydrolyze radioactive CE's isolated from serum. Hydrolytic 
activity with a pH optimum of 4.0 and shoulder towards pH 5 was found 
(Fig. 5). The reaction was linear for 10 hr (Fig, 5), and obeyed first-order 
kinetics with respect to enzyme and substrate concentrations. The maximum 
hydrolysis of the mixed ester substrate was 50 %. This may reflect the inherent 
hydrolyzability of the mixed CE's, or may relate to the physical state of the 
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FIG. 5. pH  op t imum of macrophage cholesterol esterase. Macrophage Iysates (100 /2g 
protein) were incubated with CE 's  for 10 hr at  37°C. Inser t  shows linearity of hydrolysis using 
the mixed serum CE's  a t  pH  4.0. 

enzyme and substrate in the reaction mixture. Serum had no cholesterol ester- 
ase activity. The hydrolysis of CL was characterized by a sharper maximum 
rate at pH 4.0 with a shoulder towards the higher pH. CP was hydrolyzed 
slowly over a broad range of pH with the maximum occurring at pH 5.0. 

Intracellular distribution of the cholesterol esterase was determined by 
differential centrifugation fractionation of macrophages (Table II) .  Choles- 
terol esterase activity had the same distribution as acid phosphatase with a 
twofold enrichment in the large granule fraction. Cholesterol esterase activity 
was also enriched 2.5-fold in latex phagolysosomes, with 85 % of the activity 
associated with latex-containing fractions. This evidence indicated that  the 
cholesterol esterase was lysosomal. 

Cohn (21, 22) reported that both the total and specific activities of acid 
hydrolases increased during cultivation in high serum medium. A 12-fold 
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increase in tota l  cholesterol esterase ac t iv i ty  us ing CL as subst ra te ,  occurred 
be tween  4 and  72 hr  of cu l t iva t ion  in 30% NBCS.  A fivefold increase in the 

specific ac t iv i ty  occurred to a m a x i m u m  of 14.2 nmoles  CL hyd ro lyzed /h r  per  

m g  prote in  (Table  I I I ) .  

TABLE II  

Intraeellular Localization of Acid Cholesterol l~sterase* 

Fraction Protein Cholesterol esterase:~ Acid phosphatase§ 

Homogenate 

Nuclear (500 g, 10') 

Large granule (10,000 
g, 30') 

Microsomes + soluble 
(10,000 g, 30 t) 
supernatant 

Recovery 

ug % 

815 100 

108 13.3 

264 32.5 

480 58.9 

852 104.6 

Activity 
units 

0. 126 

0.027 

0.087 

0.023 

137.2 

S.A. Activity 
% units units 

100 0. 155 98.7 

21.6 0.239 13.9 

69.4 0. 332 79.0 

18 3 0.047 17.8 

109.3 110.7 

% S.A. 
units 

100 121.3 

14.0 128.0 

80.0 299.0 

18.0 37.1 

112.0 

* Four T-30 flasks, cultivated for 48 hr in 30~ NBCS, were used for differential centrifu- 
gation fractionation. 

;t Cholesterol esterase: activity units, nmoles CE (mixed esters) hydrolyzed/min; specific 
activity (S.A.) units, nmoles/min per mg protein. 

§ Acid phosphatase: activity units, nmoles a-naphthol liberated/min; S.A. units, nmoles 
o~-naphthol/min per mg protein. 

TABLE III  

Properties of Maerophage Cholesterol Esterase 

Cultivation in 
30% NBCS CL CP Plasma CE's 

hr Activ~y units* S.A.  units$ Activity un~s* S.A.  units~ Activity units* S.A.  units~ 

4 0.0033 0.052 0.0003 0.0052 - -  - -  
24 0.0217 0.180 0.0005 0.0042 0.0125 0.105 
72 0.0383 0.237 0.0012 0.072 0.0250 0.153 

* Activity units: nmoles CE hydrolyzed/min per T-15 flask. 
Specific activity (S.A.) units: nmoles CE/hr per mg protein; lysates were prepared from 

T-15 flasks containing 65, 120, and 163/lg cell protein at 4, 24, and 72 hr, respectively. 

CL was hydrolyzed  much  more  readi ly by  the  macrophage  lysates  t h a n  CP  
(Table  I I I ) .  Wi th  lysates from macrophages  cu l t iva ted  for 72 hr  in 30% 
N B C S  the  cholesterol esterase specific ac t iv i ty  was 33 t imes as great  for CL 
as for CP.  The  hydrolysis  of the  p lasma CE ' s  was in te rmedia te  in value,  per- 
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haps reflecting differential hydrolysis of the different esters. However, the poor 
hydrolysis of CP in this assay may in part be due to the physical state of the 
substrate (solid at 37°C). The biochemical assay was probably a surface reac- 
tion with the substrate adsorbed in a layer to the surface of the tube or as a 
floating layer at the buffer-air interface. Detergents did not facilitate the 
reaction. Triton X-100 at 5 % final concentration, and sodium taurocholate at 
4 % had no effect. Tween 20 was slightly inhibitory. The presence of PE in the 
reaction mixture completely inhibited hydrolysis. Iodoacetimide (1 mM) and 
p-chloromercuribenzosulfone (1 m~) inhibited hydrolysis about 50%, while 
dithiothreitol (1 mM) had no effect. 

Rabbit alveolar macrophages also contain cholesterol esterase activity, with 
a pH optimum of 3.8 and a shoulder towards pH 5.0 when assayed with mixed 
CE's. At pH 4.0, 0.211 nmoles of mixed serum CE's were hydrolyzed/min per 
mg protein. 

Morphological Studies of Ingested CE's.--CE-albumin complexes were also 
taken up and sequestered within phagolysosomes. After phagocytosis of CL 
complexes, phase-dense bodies with refractile inclusions were seen in the peri- 
nuclear zone (Fig. 6). Within hours, these complexes became more refractile 
and decreased in number (Fig. 6 b). By 48 hr few complexes remained (Fig. 
6 c), and at this time the cells had about the same number of phase-dense 
granules as the controls. In the electron microscope, the cells were filled with 
membrane-bounded CL complexes, with an electron-opaque matrix and more 
electron-lucent globules (Fig. 7 a). Cells which had ingested CP had a similar 
phase microscopic appearance immediately after ingestion (Fig. 6 d, e). How- 
ever, at 24 and 48 hr after phagocytosis (Fig. 6f),  most of the refractile material 
persisted in the granules arranged in the "hof" of the nucleus. 

Ingestion and Intracellular Fate of CL-3H Complexes.--Macrophages were 
exposed to the complexes in 20% NBCS at a concentration of 0.2/~moles/ml 
and uptake was linear for many hours (Fig. 8 b). In 4 hr, each flask had ingested 
15.5 nmoles (10/~g) CL. During the subsequent 96 hr in 20% NBCS, label was 
lost from the cells (Fig. 8 a). Since no cell loss occurred, loss of label was an 
active process. All the label was recovered in the medium as free cholesterol. 
The loss of cholesterol from the CL complexes proceeded as a monophasic 
exponential decay with a half-life of 24 hr (for six experiments h/2 = 22 4- 3 
hr). The loss was characterized by a rate constant kcL = 0.029 hr -1. Thus, the 
initial rate of loss of label was 0.029 )< 15.5 = 0.45 nmoles/hr per flask (63 
pmoles/min per mg cell protein), which was less than the rate of hydrolysis of 
CL by macrophage lysates in the test tube (Table IV). This suggested that the 
rate of intracellular hydrolysis of CL was not rate-limiting for excretion. This 
rate constant was remarkably similar to the rate constant for loss of choles- 
terol from ingested free cholesterol-albumin complexes, and suggested that a 
similar rate-limiting step was operating with the ester. When the molecular 



FIc. 6. Appearance of macrophages after ingestion of CE complexes. Phase contrast 
X 1500. (a)-(c) CL. (a) 15 rain after phagocytosis of complexes numerous phase-dense and 
refractile granules are present in the perinuclear area. Otherwise the cell is well spread and 
normal. (b) 5 hr after phagocytosis the granules are more refractile in appearance. (c) 48 hr 
after phagocytosis few complexes remain. The large refractile objects are triglyceride droplets. 
(d)-(f) CP. (d) 15 rain after phagocytosis of complexes this cell is filled with many irregular 
masses. (e) 5 hr after phagocytosis little change has occurred. This cell has few large com- 
plexes. ([) 48 hr later many granules persisted. Crystals are seen in large phagolysosomes. A 
few large refractile triglyceride droplets are present outside the granule region. 

32 
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species of the intracellular label were examined (Table IV) a considerable 
amount  of intraceltular free cholesterol was found, and its proportion increased 
with time. This indicated that  the rate of hydrolysis was greater than the rate 
of excretion. The CL particles contained only CE, and the washout medium 
contained only free cholesterol. At  the start of the washout period, 30% of the 
ester had already been hydrolyzed intracellularly. 

FIO. 7. Ultrastructure of a macrophage which has ingested CL complexes. X 21,000. 30 
min after ingestion the cell contains many phagolysosomes (arrows). These membrane- 
bounded granules contain electron-lucent droplets embedded in an electron-opaque matrix. 
Other cytoplasmic organelles appear normal. 

The intracellular concentration of the CL complexes did not affect the rate 
of loss of label from the cells (Fig. 8 c). Macrophages were incubated in medium 
containing the complexes for 114, 3, and 5 hr. This gave intracellular levels of 
10.5, 16.3, and 30 nmoles/flask, respectively, at start of the washout. In  all 
three cases the half-time for loss was 25 hr (kcL = 0.028 hr-1), which gave 
initial rates of excretion of cholesterol from the ingested CL complexes of 5.0, 
7.7, and 14.0 pmoles/min per fask  respectively. In  all three cases it was un- 
likely that  the rate of hydrolysis was limiting. Since the number of phagocytic 
vacuoles was approximately proportional to the amount of particulate material 
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I I I 

Time after ingestion (hours) 

FIO. 8. Excretion of CL-3H complexes from macrophages. (a) Loss of label into 20% 
NBCS from cells which had ingested complexes for 3.5 hr. (b) Uptake of complexes by macro- 
phages from 20% NBCS containing 0.2//moles CL/ml in the form of complexes. (c) Effect of 
initial intracellular concentration of CL on the rate of excretion of label. Initial intracellular 
levels were 30.0 (O), 16.3 (A), and 10.5(O) nmoles/flask. 

taken up, it is possible that  the exponential rate dependence may indicate a 
constant rate of flux across the lysosomal membrane. This suggests that  a 
constant net flux of cholesterol per unit area of the lysosomal membrane may  
take place. 
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Serum lipoprotein concentration of the medium affected the rate of excre- 

tion of free cholesterol from the ingested CL complexes (Table V). There was 
vir tual ly no excretion of label from cells incubated in medium in the absence 

of serum (1% BSA), although intracellular hydrolysis of cholesterol occurred 

TABLE IV 

Nature of Intracellular Label after Ingestion of CE's 

CE Ingested; 

Time after ingestion* CL CP 

% as C % as CE % as C % as CE 

hr cpm cpm cpm cpm 

0 30 70 4 96 
24 70 30 5 95 
48 80 20 2 98 
70 94 6 8 92 
92 Trace - -  15 85 

CE complexes 0 100 0 100 
Washout medium(48 hr) >95 >95 

* Ingestion time was 4 hr. 
:~ Abbreviations: C, Cholesterol; CE, cholesterol ester. 

TABLE V 

E~ect of Serum Concentration on Loss of CL from Macrophages 

dpm remaining* Initial rate of 
Serum concentration kcE:~ 

24 hr 48 hr excretion§ 

~r-1 

0 99  - -  < 0 . 0 1  0 

(1% BSA ) 
1 67 4- 7 49 4- 4 0.015 0.145 

20 31 4- 9 16 4- 2 0.031 0.311 
40 26 4- 2 19 4- 3 0.028 0.281 

* 100% = 7.9 X 104 dpm/flask (2.9 X 10 -s moles CL/flask) ; ingestion medium contained 
2 X 10 -7 moles/ml as particles. 

Rate constant kcE = In 2/h/2, where hi2 was half-life for loss of intracellular label. 
§ Initial rate: nmoles/min per mg cell protein. 

during the incubation. In  this experiment no further increase in rate of loss 
occurred for concentrations of serum above 20% NBCS. The maximum rate 
was about 18 nmoles/hr  per mg cell protein and occurred in the limiting case 
where the rate of excretion of cholesterol was equal to or greater than the rate 
of hydrolysis of CL. 

For the usual intracellular concentrations of phagocytized CL cornplexes, 
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in 20% NBCS, the cholesterol esterase was not limiting and the rate of excre- 
tion of free cholesterol was the rate-determining reaction. 

Intracellular Fate of Ingesled CP-aH complexes.--CP-albumin complexes 
were phagocytized as readily by macrophages as CL-albumin complexes. 
However, cholesterol from CP complexes was lost very slowly (Fig. 9). Starting 
with initial intracellular concentrations of 15 nmoles in both cases, the rate of 
loss of label from cells ingesting CP w a s  kcP = 0.01 hr -1, compared to rate of 
loss from cells ingesting CL of kcT, = 0.028 hr -1. In other experiments kcp varied 
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FIG. 9. Loss of labeled free cholesterol from macrophages which have ingested particulate 
complexes containing either CP or CL. Scale at  right indicates total cholesterol per flask 
present intracellularly after ingestion. 

from 0.0115 to 0.006 hr -1 for initial intracellular concentrations of 10-27 
nmoles CP/flask. Unlike the CL-filled cells, the amount of radioactive free 
cholesterol was small and did not change with time in the CP-filled cells (Table 
IV). 

Increase or decrease of serum lipoprotein concentration present in the extra- 
cellular fluid had little effect on excretion of label from cells ingesting CP. In 
the absence of lipoproteins (1% BSA medium) no label was excreted. 

This data indicated a slower rate of intracellular hydrolysis of CP. The rate- 
limiting reaction for excretion of cholesterol from cells ingesting CP complexes 
was the rate of hydrolysis. 
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Intracellular Fate of Mixed Serum CE's.--Cholesterol-3H esters labeled by 
the lecithin-cholesterol acyltransferase reaction in fresh human serum were 
also used to study intracellular processing of CE in macrophages. The major 
component of the serum esters was CL (60.4%). However, considerable quan- 
tities of cholesteryl oleate (19.4%), CP (8.1%), and others eters (12.1%) were 
also present. The mixed CE-albumin complexes were taken up avidly and 
resulted in similar morphological alterations. During the subsequent incuba- 
tion in 20% NBCS, label was lost from the cells, and recovered in the medium 

oa 
i 

0 

u') 

( 3  

E 

I0  

9 ~ 

8 

7 

6 

5 

(a) io (b) Uptake 

/ 

I I I I I I ! l I ! 

0 20  4 0  6 0  8 0  I 0 0  

,o~ 

5-~  
E 
c--  

Time after ingestion (hours) 

FIG. 10. Uptake and excretion of mixed serum CE's. (a) Loss of labeled cholesterol from 
macrophages which had ingested 16.8 nmoles particulate CE/flask, during incubation in 20% 
NBCS. (b) Uptake of complexes prepared with serum CE's. 

as free cholesterol (Fig. 10). A biphasic or multiphasic exponential loss curve 
was seen, in contrast to the single exponential loss of label in the case of a 
single molecular species of CE. The shape of the excretion curve suggested 
differential hydrolysis of the different CE's in the mixture. 

DISCUSSION 

Fate of Free Cholesterol,--The results indicate that phagocytosis of choles- 
terol leads to the net accumulation of cell cholesterol which is then excreted 
into the medium. In contrast cholesterol exchange does not result in the net 
accumulation of cholesterol (I). Excretion of cholesterol probably occurs by 
the same mechanism as exchange and does not involve bulk exocytosis (22, 23). 
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Particulate cholesterol is present intralysosomally surrounded by the choles- 
terol-rich lysosomal membrane comprising the cellular, slowly exchanging 
pool. Initially, all the label is present within this intralysosomal compartment 
and only a single exponential decay rate is seen. The more rapid rates in the 
sequence may be "hidden" behind the rate-limiting reaction (24). This decay 
is described by 

C* = Co*e -kct 

where c* is the amount of cholesterol (or label) remaining, co* is the initial 
amount of cholesterol (or label), ! is the time, and kc is the rate constant = 
In 2/1~/2. k~ describes the rate-limiting step, and indicates that about 3% of 
the cholesterol remaining is excreted/hr. Although the precise location of the 
rate-limiting step is unknown, the value of kc is invariant over a wide range 
of intracellular cholesterol concentrations (10-150 #g cholesterol/flask at time 
zero). The complexes are taken up into many phagolysosomes thereby increas- 
ing the area of lysosomal membrane surface. Exchange probably occurs be- 
tween the cholesterol at the surface of the complexes and the lysosomal mem- 
brane cholesterol. Since the membrane surface area increases proportionately 
to the number of the particulate complexes ingested, the cholesterol flux across 
each unit area of membrane may be constant. Initially there are many phago- 
lysosomes and the available lysosomal membrane area is large. As the com- 
plexes are modified intralysosomally the size and number of secondary lyso- 
somes decrease, resulting in a decreased lysosomal membrane area across which 
cholesterol excretion can occur. Since the value of the rate constant k32 describ- 
ing the relative movement of cholesterol from the lysosomal membrane to the 
plasma membrane during exchange is similar in value to k~, the rate-limiting 
reaction probably occurs at the same step for both exchange and excretion. 
In the absence of membrane apposition or translocation, an intracellular soluble 
"carrier" may mediate the transfer of cholesterol between the lysosomal mem- 
brane and the plasma membrane (2). Cholesterol may therefore move from 
within the lysosome to the lysosomal membrane readily, whereas the transfer 
to the intracellular carrier, or its concentration may be rate limiting. 

Cholesterol exchange kinetics are affected by the presence of intralysosomal 
cholesterol. The uptake of label by exchange was depressed about 20%. Since 
the concentration of cholesterol per unit membrane is probably constant (18), 
this observation suggests that during excretion, net flux of cholesterol out of 
the maerophage results in the reduced capacity of the membrane to accept 
cholesterol from the serum lipoproteins. The presence of intralysosomal cho- 
lesterol accelerated the rate of washout of/abel from macrophages which have 
membrane cholesterol labeled by exchange. This suggests that during choles- 
terol excretion membrane cholesterol is displaced by cholesterol excreted from 
the lysosome, while the membrane cholesterol remains constant. 
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The plasma membrane cholesterol compartment may become labeled during 
cholesterol excretion; however the rapid rate of transfer is hidden behind slower 
rates in the sequence. The serum lipoprotein dependency of both excretion and 
exchange suggests that cholesterol translocation in the macrophage involves 
membrane-lipoprotein reactions at the plasma membrane. 

Fate of Cholesteral Esters.--CE's as particulate albumin coacervates are taken 
up by macrophages and hydrolyzed by a lysosomal CE hydrolase. This enzyme 
has a pH optimum of 4.0 with unsaturated CE's, and 5.5 with CP. CL is hy- 
drolyzed nmch more readily than CP both in the test tube and intralysosomally. 
Unlike pancreatic cholesterol esterase (25), bile acids and detergents are not re- 
quired for activity. A cholesterol esterase active at acid pH has not been demon- 
strated clearly in other tissues (6, 8, 26-28). An exception is the report of 
Patrick and Lake (29) that an acid "lipase" capable of hydrolyzing both trio- 
lein and cholesteryl oleate at pH 4.6 is absent in Wolman's disease, an inborn 
error in which both triglycerides and CE's accumulate within storage granules. 
No cholesterol esterifying activity was found in the macrophage, in contrast 
to observations of Day (30-32). 

CE's are not exchanged. In the macrophage unhydrolyzed esters remain 
intralysosomally. This is in keeping with observations that CE's do not ex- 
change between lipoprotein classes in plasma (3), and that little esterified 
cholesterol is returned to the medium of LS178Y mouse lymphoblasts which 
contain considerable levels of CE's (33-35). Excretion of free cholesterol, 
liberated by the hydrolysis of CE's, occurs by the same mechanism as excre- 
tion of excess free cholesterol from ingested free cholesterol complexes. The 
requirement for serum lipoprotein, the characteristic rate constant, and the 
effect on exchange kinetics suggest that cholesterol excretion utilizes the same 
"transport" system as exchange of cholesterol. This provides a mechanism for 
clearing lysosomes of free and esterified cholesterol brought in by bulk trans- 
port. 

The intralysosomal hydrolysis of CE's has many implications for lipid proc- 
essing by cells. The active cholesterol esterase present in the macrophage may 
result in the absence of detectable CE in these cells. The CE content of other 
cells cultivated in vitro (35) may indicate low levels of intralysosomal CE's, 
so that pinocytized CE's are not hydrolyzed and accumulate intralysosomally. 

A General Model for Cholesterol Metabolism in the Macrophage.--The scheme 
proposed in Fig. 11 accounts for many of our observations on membrane-medi- 
ated cholesterol exchange (1, 2) and excretion. This leads to some generaliza- 
tions about the functions of mononuclear phagocytes in cholesterol metabolism. 
Only bulk transport results in macrophage storage of cholesterol in vitro. In 
vivo, effete RBC, dead cells, and polymorphonuclear leukocytes from inflam- 
matory sites may serve as cholesterol sources. Chylomicron CE's are taken up 
by Kupffer's cells. Turnover of cell constituents by autophagy (36-38) may 
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also produce intralysosomal cholesterol. This cholesterol would be transferred 

to soluble lipoproteins in the tissue spaces. Excretion of cholesterol may be 

efficient where the soluble lipoprotein concentration is high, and less efficient 

at low concentrations of lipoprotein. 

Fio. 11. Schematic model for cholesterol metabolism in the macrophage. Serum c~-lipopro- 
teins (LP) containing a cholesterol molecule (C) attach to the plasma membrane and donate C 
to the membrane. A C-poor LP can pick up the excess C from the membrane. The membrane 
proteins involved in positioning the lipoprotein on the membrane are trypsin-labile. The C 
from the plasma membrane exchanges with intracellular C-containing membranes. This may 
be mediated by a carrier (?). Cholesterol exchange may occur between membranes of the intra- 
cellular compartment as well. Endoeytosis of nondlgestible substances (®) results in the 
accumulation of phagolysosomes. Bulk transport of particulate cholesterol (@) results in an 
intralysosomal compartment of cholesterol. This C may exchange to the lysosomal membrane, 
and may be excreted out of the cell to acceptor LP. CE also enter the cell by bulk transport. 
Within secondary lysosomes the C E are hydrolyzed by cholesterol esterase (Z). The C liberated 
can be exchanged out of the cell. 

There are a number  of disorders of lipid metabolism in which circulating and 
tissue macrophages are implicated. Alteration of lysosomal hydrolases results 
in the storage of nondigested molecules segregated by autophagy and hetero- 
phagy (.39) and occurs for CE's  in Wolman's  disease. However, there are a 
number  of storage diseases in which cholesterol accumulates in tissues, although 
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the lesion is not known to involve cholesterol metabolism. We have demon- 
strated that net increases in both cholesterol and phospholipid can be consid- 
erable in cells containing storage granules, the contents of which are free of 
lipid (2). These increases are due to the membrane of the secondary lysosomes. 
Thus in Tay-Sachs (40, 41) and Niemann-Pick diseases (42) the increases in 
cholesterol may be the consequence of increased lysosomal membrane sur- 
rounding the stored lipid. 

In xanthomas, macrophages may be phagocytizing lipid of chylomicron 
origin (43, 44) more rapidly than it can be excreted by the membrane-mediated 
transport system. This may also be the case for macrophage foam cells in 
atherosclerotic plaques since much of the lipid in the macrophages is mem- 
brane bounded (45, 46). Lower concentrations or impaired cholesterol-carrying 
capacities of extracellular lipoproteins may also result in intracellular accumu- 
lation of cholesterol and CE's in these diseases. 

SUMMARY 

Phagocytosis of cholesterol-containing particles resulted in the formation of 
an intralvsosomal cholesterol compartment. Cholesterol was excreted out of 
the macrophage with a single exponential rate which depended on the concen- 
tration of acceptor lipoproteins in the medium. Exchange kinetics performed 
on cells which had ingested particulate cholesterol suggested that excretion 
occurred by the same mechanism as exchange. 

Cholesterol esters as particulate albumin coacervates were taken up by 
macrophages and hydrolyzed by a lysosomal cholesterol esterase with optimal 
activity at pH 4.0. Cholesteryl linoleate was hydrolyzed much more readily 
than cholesteryl palmitate. The amount of cholesterol esterase and its specific 
activity increased during the in vitro cultivation of macrophages. Intralyso- 
somally, cholesteryl linoleate and palmitate were hydrolyzed to free choles- 
terol which was excreted from the macrophage and recovered in the medium. 
Since cholesteryl linoleate was hydrolyzed more rapidly than free cholesterol 
was excreted into the medium, free cholesterol accumulated intralysosomally. 
Cholesteryl palmitate was hydrolyzed more slowly, and the rate of hydrolysis 
was limiting for excretion of the free cholesterol from within the lysosome. 
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